Skip to main content

Syllabus for BITSAT-2017 Chemistry

1. States of Matter
1.1
Measurement: Physical quantities and SI units, Dimensional analysis, Precision, Significant figures.

NCERT Chapter wise practice tests for Free
1.2
Chemical reactions: Laws of chemical combination, Dalton’s atomic theory; Mole concept; Atomic, molecular and molar masses; Percentage composition empirical & molecular formula; Balanced chemical equations & stoichiometry
1.3
Three states of matter, intermolecular interactions, types of bonding, melting and boiling points
Gaseous state: Gas Laws, ideal behavior, ideal gas equation, empirical derivation of gas equation, Avogadro number, Deviation from ideal behaviour – Critical temperature, Liquefaction of gases, van der Waals equation.
1.4
Liquid state: Vapour pressure, surface tension, viscosity.
NCERT Chapter wise practice tests for Free
1.5
Solid state: Classification; Space lattices & crystal systems; Unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell – Cubic & hexagonal systems; Close packing; Crystal structures: Simple AB and AB2 type ionic crystals, covalent crystals – diamond & graphite, metals. Voids, number of atoms per unit cell in a cubic unit cell, Imperfections- Point defects, non-stoichiometric crystals; Electrical, magnetic and dielectric properties; Amorphous solids – qualitative description. Band theory of metals, conductors, semiconductors and insulators, and n- and p- type semiconductors.
2. Atomic Structure
2.1
Introduction: Subatomic particles; Atomic number, isotopes and isobars, Thompson’s model and its limitations, Rutherford’s picture of atom and its limitations; Hydrogen atom spectrum and Bohr model and its limitations.
NCERT Chapter wise practice tests for Free
2.2
Quantum mechanics: Wave-particle duality – de Broglie relation, Uncertainty principle; Hydrogen atom: Quantum numbers and wavefunctions, atomic orbitals and their shapes (s, p, and d), Spin quantum number.
2.3
Many electron atoms: Pauli exclusion principle; Aufbau principle and the electronic configuration of atoms, Hund’s rule.
2.4
Periodicity: Brief history of the development of periodic tables Periodic law and the modern periodic table; Types of elements: s, p, d, and f blocks; Periodic trends: ionization energy, atomic, and ionic radii, inter gas radii, electron affinity, electro negativity and valency. Nomenclature of elements with atomic number greater than 100.
3. Chemical Bonding & Molecular Structure
3.1
Valence electrons, Ionic Bond: Lattice Energy and Born-Haber cycle; Covalent character of ionic bonds and polar character of covalent bond, bond parameters
NCERT Chapter wise practice tests for Free
3.2
Molecular Structure: Lewis picture & resonance structures, VSEPR model & molecular shapes
3.3
Covalent Bond: Valence Bond Theory- Orbital overlap, Directionality of bonds & hybridization (s, p & d orbitals only), Resonance; Molecular orbital theory- Methodology, Orbital energy level diagram, Bond order, Magnetic properties for homonuclear diatomic species (qualitative idea only).
3.4
Dipole moments; Hydrogen Bond.

4. Thermodynamics
4.1
Basic Concepts: Systems and surroundings; State functions; Intensive & Extensive Properties; Zeroth Law and Temperature
4.2
First Law of Thermodynamics: Work, internal energy, heat, enthalpy, heat capacities and specific heats, measurements of ΔU and ΔH, Enthalpies of formation, phase transformation, ionization, electron gain; Thermochemistry; Hess’s Law, Enthalpy of bond dissociation, combustion, atomization, sublimation, solution and dilution
4.3
Second Law: Spontaneous and reversible processes; entropy; Gibbs free energy related to spontaneity and non-spontaneity, non-mechanical work; Standard free energies of formation, free energy change and chemical equilibrium
4.4
Third Law: Introduction
5. Physical and Chemical Equilibria
5.1
Concentration Units: Mole Fraction, Molarity, and Molality
NCERT Chapter wise practice tests for Free
5.2
Solutions: Solubility of solids and gases in liquids, Vapour Pressure, Raoult’s law, Relative lowering of vapour pressure, depression in freezing point; elevation in boiling point; osmotic pressure, determination of molecular mass; solid solutions, abnormal molecular mass, van’t Hoff factor. Equilibrium: Dynamic nature of equilibrium, law of mass action
5.3
Physical Equilibrium: Equilibria involving physical changes (solid-liquid, liquid-gas, solid-gas), Surface chemistry, Adsorption, Physical and Chemical adsorption, Langmuir Isotherm, Colloids and emulsion, classification, preparation, uses.
5.4
Chemical Equilibria: Equilibrium constants (KP, KC), Factors affecting equilibrium, Le-Chatelier’s principle.
5.5
Ionic Equilibria: Strong and Weak electrolytes, Acids and Bases (Arrhenius, Lewis, Lowry and Bronsted) and their dissociation; degree of ionization, Ionization of Water; ionization of polybasic acids, pH; Buffer solutions; Henderson equation, Acid-base titrations; Hydrolysis; Solubility Product of Sparingly Soluble Salts; Common Ion Effect.
5.6
Factors Affecting Equilibria: Concentration, Temperature, Pressure, Catalysts, Significance of G and G0 in Chemical Equilibria.
6. Electrochemistry
6.1
Redox Reactions: Oxidation-reduction reactions (electron transfer concept); Oxidation number; Balancing of redox reactions; Electrochemical cells and cell reactions; Standard electrode potentials; EMF of Galvanic cells; Nernst equation; Factors affecting the electrode potential; Gibbs energy change and cell potential; Secondary cells; dry cells, Fuel cells; Corrosion and its prevention.
NCERT Chapter wise practice tests for Free
6.2
Electrolytic Conduction: Electrolytic Conductance; Specific and molar conductivities; variations of conductivity with concentration , Kolhrausch’s Law and its application, Electrolysis, Faraday’s laws of electrolysis; Electrode potential and electrolysis, Commercial production of the chemicals, NaOH, Na, Al.
7. Chemical Kinetics
7.1
Aspects of Kinetics: Rate and Rate expression of a reaction; Rate constant; Order and molecularity of the reaction; Integrated rate expressions and half life for zero and first order reactions.
7.2
Factor Affecting the Rate of the Reactions: Concentration of the reactants, catalyst; size of particles, Temperature dependence of rate constant concept of collision theory (elementary idea, no mathematical treatment); Activation energy.
7.3 Surface Chemistry
Adsorption – physisorption and chemisorption; factors affecting adsorption of gasses on solids; catalysis: homogeneous and heterogeneous, activity and selectivity: enzyme catalysis, colloidal state: distinction between true solutions, colloids and suspensions; lyophillic, lyophobic multi molecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulations; emulsions–types of emulsions.
8. Hydrogen and s-block elements
NCERT Chapter wise practice tests for Free
8.1
Hydrogen: Element: unique position in periodic table, occurrence, isotopes; Dihydrogen: preparation, properties, reactions, and uses; Molecular, saline, ionic, covalent, interstitial hydrides; Water: Properties; Structure and aggregation of water molecules; Heavy water; Hydrogen peroxide: preparation, reaction, structure & use, Hydrogen as a fuel.
8.2
s-block elements: Abundance and occurrence; Anomalous properties of the first elements in each group; diagonal relationships; trends in the variation of properties (ionization energy, atomic & ionic radii).
8.3
Alkali metals: Lithium, sodium and potassium: occurrence, extraction, reactivity, and electrode potentials; Biological importance; Reactions with oxygen, hydrogen, halogens water; Basic nature of oxides and hydroxides; Halides; Properties and uses of compounds such as NaCl, Na2CO3, NaHCO3, NaOH, KCl, and KOH.
8.4
Alkaline earth metals: Magnesium and calcium: Occurrence, extraction, reactivity and electrode potentials; Reactions with O2, H2O, H2 and halogens; Solubility and thermal stability of oxo salts; Biological importance of Ca and Mg; Preparation, properties and uses of important compounds such as CaO, Ca(OH)2, plaster of Paris, MgSO4, MgCl2, CaCO3, and CaSO4.
9. p- d- and f-block elements
9.1
General: Abundance, distribution, physical and chemical properties, isolation and uses of elements; Trends in chemical reactivity of elements of a group; electronic configuration, oxidation states; anomalous properties of first element of each group.
9.2
Group 13 elements: Boron; Properties and uses of borax, boric acid, boron hydrides & halides. Reaction of aluminum with acids and alkalis;
9.3
Group 14 elements: Carbon: carbon catenation, physical & chemical properties, uses, allotropes (graphite, diamond, fullerenes), oxides, halides and sulphides, carbides; Silicon: Silica, silicates, silicone, silicon tetrachloride, Zeolites, and their uses
NCERT Chapter wise practice tests for Free
9.4
Group 15 elements: Dinitrogen; Preparation, reactivity and uses of nitrogen; Industrial and biological nitrogen fixation; Compound of nitrogen; Ammonia: Haber’s process, properties and reactions; Oxides of nitrogen and their structures; Properties and Ostwald’s process of nitric acid production; Fertilizers – NPK type; Production of phosphorus; Allotropes of phosphorus; Preparation, structure and properties of hydrides, oxides, oxoacids (elementary idea only) and halides of phosphorus, phosphine.
9.5
Group 16 elements: Isolation and chemical reactivity of dioxygen; Acidic, basic and amphoteric oxides; Preparation, structure and properties of ozone; Allotropes of sulphur; Preparation/production properties and uses of sulphur dioxide and sulphuric acid; Structure and properties of oxides, oxoacids (structures only).
NCERT Chapter wise practice tests for Free
9.6
Group 17 and group 18 elements: Structure and properties of hydrides, oxides, oxoacids of halogens (structures only); preparation, properties & uses of chlorine & HCl; Inter halogen compounds; Bleaching Powder; Uses of Group 18 elements, Preparation, structure and reactions of xenon fluorides, oxides, and oxoacids.
9.7
d-Block elements: General trends in the chemistry of first row transition elements; Metallic character; Oxidation state; ionization enthalpy; Ionic radii; Color; Catalytic properties; Magnetic properties; Interstitial compounds; Occurrence and extraction of iron, copper, silver, zinc, and mercury; Alloy formation; Steel and some important alloys; preparation and properties of K2Cr2O7, KMnO4.
9.8
f-Block elements: Lanthanoids and actinoids; Oxidation states and chemical reactivity of lanthanoids compounds; Lanthanide contraction and its consequences, Comparison of actinoids and lanthanoids.
9.9
Coordination Compounds: Coordination number; Ligands; Werner’s coordination theory; IUPAC nomenclature; Application and importance of coordination compounds (in qualitative analysis, extraction of metals and biological systems e.g. chlorophyll, vitamin B12, and hemoglobin); Bonding: Valence-bond approach, Crystal field theory (qualitative); Isomerism including stereoisomerisms.
10. Principles of Organic Chemistry and Hydrocarbons
NCERT Chapter wise practice tests for Free
10.1
Classification: General Introduction, classification based on functional groups, trivial and IUPAC nomenclature. Methods of purification: qualitative and quantitative,
10.2
Electronic displacement in a covalent bond: Inductive, resonance effects, and hyperconjugation; free radicals; carbocations, carbanions, nucleophiles and electrophiles; types of organic reactions, free radial halogenations.
10.3
Alkanes: Structural isomerism, general properties and chemical reactions, free redical helogenation, combustion and pyrolysis.
10.4
Alkenes and alkynes: General methods of preparation and reactions, physical properties, electrophilic and free radical additions, acidic character of alkynes and (1,2 and 1,4) addition to dienes.
10.5
Aromatic hydrocarbons: Sources; properties; isomerism; resonance delocalization; aromaticity; polynuclear hydrocarbons; IUPAC nomenclature; mechanism of electrophilic substitution reaction, directive influence and effect of substituents on reactivity; carcinogenicity and toxicity.
NCERT Chapter wise practice tests for Free
10.6
Haloalkanes and haloarenes: Physical properties, nomenclature, optical rotation, chemical reactions and mechanism of substitution reaction. Uses and environmental effects; di, tri, tetrachloromethanes, iodoform, freon and DDT.
11. Stereochemistry
11.1
Conformations: Ethane conformations; Newman and Sawhorse projections.
11.2
Geometrical isomerism in alkenes
12. Organic Compounds with Functional Groups Containing Oxygen and Nitrogen
12.1
General: Nomenclature, electronic structure, important methods of preparation, identification, important reactions, physical and chemical properties, uses of alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, nitro compounds, amines, diazonium salts, cyanides and isocyanides.
12.2
Specific: Reactivity of -hydrogen in carbonyl compounds, effect of substituents on alpha-carbon on acid strength, comparative reactivity of acid derivatives, mechanism of nucleophilic addition and dehydration, basic character of amines, methods of preparation, and their separation, importance of diazonium salts in synthetic organic chemistry.
13. Biological , Industrial and Environmental chemistry
NCERT Chapter wise practice tests for Free
13.1
Carbohydrates: Classification; Monosaccharides; Structures of pentoses and hexoses; Simple chemical reactions of glucose, Disaccharides: reducing and non-reducing sugars – sucrose, maltose and lactose; Polysaccharides: elementary idea of structures of starch, cellulose and glycogen.
13.2
Proteins: Amino acids; Peptide bond; Polypeptides; Primary structure of proteins; Simple idea of secondary , tertiary and quarternary structures of proteins; Denaturation of proteins and enzymes.
13.3
Nucleic Acids: Types of nucleic acids; Primary building blocks of nucleic acids (chemical composition of DNA & RNA); Primary structure of DNA and its double helix; Replication Transcription and protein synthesis; Genetic code.
13.4
Vitamins: Classification, structure, functions in biosystems; Hormones
NCERT Chapter wise practice tests for Free
13.5
Polymers: Classification of polymers; General methods of polymerization; Molecular mass of polymers; Biopolymers and biodegradable polymers; methods of polymerization (free radical, cationic and anionic addition polymerizations); Copolymerization: Natural rubber; Vulcanization of rubber; Synthetic rubbers. Condensation polymers.
13.6
Pollution: Environmental pollutants; soil, water and air pollution; Chemical reactions in atmosphere; Smog; Major atmospheric pollutants; Acid rain; Ozone and its reactions; Depletion of ozone layer and its effects; Industrial air pollution; Green house effect and global warming; Green Chemistry, study for control of environmental pollution.
13.7
Chemicals in medicine, health-care and food: Analgesics, Tranquilizers, antiseptics, disinfectants, anti-microbials, anti-fertility drugs, antihistamines, antibiotics, antacids; Preservatives, artificial sweetening agents, antioxidants, soaps and detergents.
14. Theoretical Principles of Experimental Chemistry
14.1
Volumetric Analysis: Principles; Standard solutions of sodium carbonate and oxalic acid; Acid-base titrations; Redox reactions involving KI, H2SO4, Na2SO3, Na2S2O3 and H2S; Potassium permanganate in acidic, basic and neutral media; Titrations of oxalic acid, ferrous ammonium sulphate with KMnO4, K2 Cr2O7/Na2S2O3, Cu(II)/Na2S2O3.
14.2
Qualitative analysis of Inorganic Salts: Principles in the determination of the cations Pb2+, Cu2+, As3+, Mn2+, Al3+, Zn2+, Co2+, Ca2+, Sr2+, Ba2+, Mg2+, NH4+, Fe3+, Ni2+ and the anions CO32-, S2-, SO42-, SO32-, NO2-, NO3-, Cl-, Br-, I-, PO43-, CH3COO-, C2O42-.
14.3
Physical Chemistry Experiments: preparation and crystallization of alum, copper sulphate. Benzoic acid ferrous sulphate, double salt of alum and ferrous sulphate, potassium ferric sulphate; Temperature vs. solubility; Study of pH charges by common ion effect in case of weak acids and weak bases; pH measurements of some solutions obtained from fruit juices, solutions of known and varied concentrations of acids, bases and salts using pH paper or universal indicator; Lyophilic and lyophobic sols; Dialysis; Role of emulsifying agents in emulsification. Equilibrium studies involving ferric and thiocyanate ions (ii) [Co(H2O)6]2+ and chloride ions; Enthalpy determination for strong acid vs. strong base neutralization reaction (ii) hydrogen bonding interaction between acetone and chloroform; Rates of the reaction between (i) sodium thiosulphate and hydrochloric acid, (ii) potassium iodate and sodium sulphite (iii) iodide vs. hydrogen peroxide, concentration and temperature effects in these reactions.
NCERT Chapter wise practice tests for Free
14.4
Purification Methods: Filtration, crystallization, sublimation, distillation, differential extraction, and chromatography. Principles of melting point and boiling point determination; principles of paper chromatographic separation – Rf values.
14.5
Qualitative Analysis of Organic Compounds: Detection of nitrogen, sulphur, phosphorous and halogens; Detection of carbohydrates, fats and proteins in foodstuff; Detection of alcoholic, phenolic, aldehydic, ketonic, carboxylic, amino groups and unsaturation.
14.6
Quantitative Analysis of Organic Compounds: Basic principles for the quantitative estimation of carbon, hydrogen, nitrogen, halogen, sulphur and phosphorous; Molecular mass determination by silver salt and chloroplatinate salt methods; Calculations of empirical and molecular formulae.
14.7
Principles of Organic Chemistry Experiments: Preparation of iodoform, acetanilide, p-nitro acetanilide, di-benzayl acetone, aniline yellow, beta-naphthol; Preparation of acetylene and study of its acidic character.
14.8
Basic Laboratory Technique:
Cutting glass tube and glass rod, bending a glass tube, drawing out a glass jet, boring of cork.


Comments

Popular posts from this blog

How to Behave During a Market Fall

 Market falls can be unnerving, especially when the headlines scream doom and gloom. However, for savvy investors, a market dip is not just a moment of anxiety—it’s an opportunity. If the companies in your portfolio have strong fundamentals, a market fall can be the perfect time to double down on your investments by averaging in dips. In this blog, we’ll explore how to behave during a market downturn, why averaging in dips can be a sound strategy, and how to identify fundamentally strong stocks that can weather the storm. 1. Understanding Market Falls Market falls are a natural part of investing and can be caused by various factors such as: Macroeconomic Issues: Inflation, interest rate hikes, or geopolitical tensions. Sector-Specific Challenges: Regulatory changes or disruptions in specific industries. Global Events: Pandemics, wars, or financial crises. While the causes vary, one thing is consistent: markets are cyclical. Historically, they recover and often reach new highs af...

Last-Minute Tips and Tricks for JEE Mains 2025: Ace Your Exam with Confidence

 As JEE Mains 2025 approaches, the anxiety and pressure to perform can feel overwhelming. But remember, the final days before the exam are crucial, and using them wisely can significantly boost your performance. This blog offers actionable last-minute tips and tricks to help you revise effectively, stay calm, and maximize your score. 1. Revise Strategically in the Last Week The last week is not for learning new topics but for consolidating what you already know. Here’s how you can revise effectively: Prioritize High-Weightage Topics : Focus on topics that carry the most marks in Physics, Chemistry, and Mathematics. Use Short Notes : Revise formulas, reaction mechanisms, and key concepts using your summary notes. Solve Conceptual Questions : Practice problems from frequently asked topics like Mechanics, Organic Chemistry, and Calculus. Revise NCERT for Chemistry : For Inorganic Chemistry, NCERT is your best friend. Memorize periodic trends and exceptions. Pro Tip: Divide each day in...

Understanding Today’s Indian Stock Market Fall: Causes, Implications, and What Investors Should Do

  The Indian stock market witnessed a significant downturn today, leaving investors and market participants concerned about the underlying causes and potential implications. The benchmark indices, Sensex and Nifty, both closed in the red, reflecting widespread selling pressure across sectors. In this blog, we’ll delve into the reasons behind today’s market fall, its broader implications, and what investors should consider in the coming days. What Happened in the Market Today? The Indian stock market opened on a weak note and continued to decline throughout the trading session. The Sensex dropped by over 800 points (approximately 1.5%), while the Nifty fell by around 250 points (1.4%). Mid-cap and small-cap indices also saw sharp declines, underperforming the broader market. Key sectors such as banking, IT, and metals were among the worst hit, with heavyweights like HDFC Bank, Infosys, and Tata Steel leading the losses. Key Reasons Behind the Market Fall Global Market Weakness The I...